Pushing the Boundaries of Boundary Detection using Deep Learning
نویسنده
چکیده
In this work we show that Deep Convolutional Neural Networks can outperform humans on the task of boundary detection, as measured on the standard Berkeley Segmentation Dataset. Our detector is fully integrated in the popular Caffe framework and processes a 320x420 image in less than a second. Our contributions consist firstly in combining a careful design of the loss for boundary detection training, a multi-resolution architecture and training with external data to improve the detection accuracy of the current state of the art, from an optimal dataset scale F-measure of 0.780 to 0.808 while human performance is at 0.803. We further improve performance to 0.813 by combining deep learning with grouping, integrating the Normalized Cuts technique within a deep network. We also examine the potential of our boundary detector in conjunction with the higher level tasks of object proposal generation and semantic segmentation for both tasks our detector yields clear improvements over state-of-the-art systems.
منابع مشابه
An improved method for geological boundary detection of potential field anomalies
Potential field methods such as gravity and magnetic methods are among the most applied geophysical methods in mineral exploration. A high-resolution technique is developed to image geologic boundaries such as contacts and faults. Potential field derivatives are the basis of many interpretation techniques. In boundary detection, the analytic signal quantity is d...
متن کاملمرزبندی کانیها در تصویر مقاطع سنگشناسی با استفاده از نرمافزار ArcGIS
In this paper, a new method for mineral boundary detection is proposed using a model prepared in ArcGIS ModelBuilder tool. Required data for this method are gray scale images taken from petrographic thin sections. The images are captured in 19 numbers through 90° polarizers and lambda plate rotation with 5° intervals while the microscope table is fixed. Mineral boundaries are detected using the...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملDetecting Sentence Boundaries in Sanskrit Texts
The paper applies a deep recurrent neural network to the task of sentence boundary detection in Sanskrit, an important, yet underresourced ancient Indian language. The deep learning approach improves the F scores set by a metrical baseline and by a Conditional Random Field classifier by more than 10%.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015